4 research outputs found

    Seasonality of human sleep: Polysomnographic data of a neuropsychiatric sleep clinic

    Get PDF
    While short-term effects of artificial light on human sleep are increasingly being studied, reports on long-term effects induced by season are scarce. Assessments of subjective sleep length over the year suggest a substantially longer sleep period during winter. Our retrospective study aimed to investigate seasonal variation in objective sleep measures in a cohort of patients living in an urban environment. In 2019, three-night polysomnography was performed on 292 patients with neuropsychiatric sleep disturbances. Measures of the diagnostic second nights were averaged per month and analyzed over the year. Patients were advised to sleep "as usual" including timing, except alarm clocks were not allowed. Exclusion criteria: administration of psychotropic agents known to influence sleep (N = 96), REM-sleep latency > 120 min (N = 5), technical failure (N = 3). Included were 188 patients: [46.6 +/- 15.9 years (mean +/- SD); range 17-81 years; 52% female]; most common sleep-related diagnoses: insomnia (N = 108), depression (N = 59) and sleep-related breathing disorders (N = 52). Analyses showed: 1. total sleep time (TST) longer during winter than summer (up to 60 min; not significant); 2. REM-sleep latency shorter during autumn than spring (about 25 min, p = 0.010); 3. REM-sleep longer during winter than spring (about 30 min, p = 0.009, 5% of TST, p = 0.011); 4. slow-wave-sleep stable winter to summer (about 60-70 min) with 30-50 min shorter during autumn (only significant as % of TST, 10% decrease, p = 0.017). Data suggest seasonal variation in sleep architecture even when living in an urban environment in patients with disturbed sleep. If replicated in a healthy population, this would provide first evidence for a need to adjust sleep habits to season

    Engagement and Participant Experiences with Consumer Smartwatches for Health Research: a Longitudinal, Observational Feasibility Study

    No full text
    Background: wearables provide opportunities for frequent health data collection and symptom monitoring. The feasibility of using consumer cellular smartwatches to provide information both on symptoms and contemporary sensor data has not yet been investigated.Objective: this study aimed to investigate the feasibility and acceptability of using cellular smartwatches to capture multiple patient-reported outcomes per day alongside continuous physical activity data over a 3-month period in people living with knee osteoarthritis (OA).Methods: for the KOALAP (Knee OsteoArthritis: Linking Activity and Pain) study, a novel cellular smartwatch app for health data collection was developed. Participants (age ≥50 years; self-diagnosed knee OA) received a smartwatch (Huawei Watch 2) with the KOALAP app. When worn, the watch collected sensor data and prompted participants to self-report outcomes multiple times per day. Participants were invited for a baseline and follow-up interview to discuss their motivations and experiences. Engagement with the watch was measured using daily watch wear time and the percentage completion of watch questions. Interview transcripts were analyzed using grounded thematic analysis.Results: a total of 26 people participated in the study. Good use and engagement were observed over 3 months: most participants wore the watch on 75% (68/90) of days or more, for a median of 11 hours. The number of active participants declined over the study duration, especially in the final week. Among participants who remained active, neither watch time nor question completion percentage declined over time. Participants were mainly motivated to learn about their symptoms and enjoyed the self-tracking aspects of the watch. Barriers to full engagement were battery life limitations, technical problems, and unfulfilled expectations of the watch. Participants reported that they would have liked to report symptoms more than 4 or 5 times per day.Conclusions: this study shows that capture of patient-reported outcomes multiple times per day with linked sensor data from a smartwatch is feasible over at least a 3-month period.International Registered Report Identifier (IRRID): RR2-10.2196/10238</div

    Engagement and participant experiences with consumer smartwatches for health research: longitudinal, observational feasibility study

    No full text
    Background: wearables provide opportunities for frequent health data collection and symptom monitoring. The feasibility of using consumer cellular smartwatches to provide information both on symptoms and contemporary sensor data has not yet been investigated.Objective: this study aimed to investigate the feasibility and acceptability of using cellular smartwatches to capture multiple patient-reported outcomes per day alongside continuous physical activity data over a 3-month period in people living with knee osteoarthritis (OA).Methods: for the KOALAP (Knee OsteoArthritis: Linking Activity and Pain) study, a novel cellular smartwatch app for health data collection was developed. Participants (age ≥50 years; self-diagnosed knee OA) received a smartwatch (Huawei Watch 2) with the KOALAP app. When worn, the watch collected sensor data and prompted participants to self-report outcomes multiple times per day. Participants were invited for a baseline and follow-up interview to discuss their motivations and experiences. Engagement with the watch was measured using daily watch wear time and the percentage completion of watch questions. Interview transcripts were analyzed using grounded thematic analysis.Results: a total of 26 people participated in the study. Good use and engagement were observed over 3 months: most participants wore the watch on 75% (68/90) of days or more, for a median of 11 hours. The number of active participants declined over the study duration, especially in the final week. Among participants who remained active, neither watch time nor question completion percentage declined over time. Participants were mainly motivated to learn about their symptoms and enjoyed the self-tracking aspects of the watch. Barriers to full engagement were battery life limitations, technical problems, and unfulfilled expectations of the watch. Participants reported that they would have liked to report symptoms more than 4 or 5 times per day.Conclusions: this study shows that capture of patient-reported outcomes multiple times per day with linked sensor data from a smartwatch is feasible over at least a 3-month period.International Registered Report Identifier (IRRID): RR2-10.2196/10238</div
    corecore